ANALISA ALGORITMA SUPPORT VECTOR MACHINE PADA DATA BUNGA IRIS
Abstract
Konsep SVM dapat dengan mudah dijelaskan sebagai upaya untuk menemukan hyperplane optimal yang bertindak sebagai pembatas untuk dua kelas di ruang input. Penggunaan SVM sangat cocok untuk masalah klasifikasi biner. Metode SVM melakukan proses awal yaitu dengan menginputkan data yang telah ditentukan, kemudian data tersebut diolah dengan melakukan proses klasifikasi menggunakan metode SVM untuk mendapatkan hasil akurasi menggunakan metode tersebut. Langkah awal yang dilakukan adalah menentukan atribut-atribut data yang dijadikan parameter dalam mengklasifikasikan dan mendapatkan hasil akurasi data. Set pelatihan dan tes (set pelatihan dan set tes) adalah Iris. Penelitian ini menemukan bahwa tingkat akurasi tertinggi baik dari pengujian data yang dilakukan dengan menggunakan kumpulan data yang telah diuji dengan 150 data dan 3 kelas data dapat mengarah pada perolehan analisis. Ekualisasi adalah teknik pengambilan keputusan dalam proses meringkas elemen yang berbeda dengan pembobotannya. Pembobotan dapat bersifat obyektif dengan menggunakan perhitungan statistik atau secara subyektif dengan memberikan menurut pertimbangan tertentu. Studi ini menunjukkan bahwa SVM memiliki hasil yang baik untuk memecahkan masalah bahkan pada dataset kecil. Hasil analisis menggunakan metode support vector machine menunjukkan tingkat jawaban benar sebesar 95,00%. Hasil ini menunjukkan bahwa SVM berhasil dan berpengaruh pada penerapan atribut ke nilai numerik. Semakin banyak atribut yang kita gunakan, semakin lambat waktu dan kecepatannya, dan semakin tidak akurat dan kompleks jadinya.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
An author who publishes in the Jurnal Darma Agung agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgement of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).