IMPLEMENTASI ALGORITMA PRINCIPAL COMPONENT ANALYSIS (PCA) DAN K-NEAREST NEIGHBOR (KNN) UNTUK MEMPREDIKSI KELAYAKAN KREDIT PENGGUNA SMARTPHONE DI INDONESIA PADA MASA PANDEMI COVID-19
Abstract
Dalam penelitian ini, kami bertujuan untuk memprediksi kelayakan kredit pengguna smartphone di Indonesia selama masa Pandemi COVID-19 menggunakan algoritma machine learning. Algoritma Principal Component Analysis (PCA) dan K-means digunakan untuk mereduksi dimensi dataset dan mengelompokkan kelayakan kredit dari sejumlah 1050 data set responden yang terdiri dari dua belas pertanyaan kepada pengguna smartphone di Indonesia selama pandemi COVID-19. Algoritma klasifikasi K-Nearest Neighbor (KNN) juga digunakan untuk mengklasifikasikan kelayakan kredit pengguna smartphone di Indonesia. Pengujian yang dilakukan meliputi pengujian akurasi, presisi, recall, dan F1-score. Hasil dari penelitian ini menunjukkan bahwa algoritma klasifikasi K-Nearest Neighbor memiliki akurasi sebesar 0.85, presisi sebesar 0.87, recall 0.84, dan F1 score sebesar 0.85 dalam mengklasifikasikan kelayakan kredit pengguna smartphone di Indonesia pada masa pandemi COVID-19.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
An author who publishes in the Jurnal Darma Agung agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgement of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).