PREDIKSI KELAYAKAN KREDIT PEMAKAI PONSEL PINTAR DI INDONESIA MENGGUNAKAN ALGORITMA K NEAREST NEIGHBOR (KNN) PASCA PANDEMI
Abstract
Dalam studi ini, kami bertujuan untuk menggunakan algoritma pembelajaran mesin untuk memprediksi kelayakan kredit pemakai ponsel pintar di Indonesia pasca pandemi COVID-19. Algoritma pembelajaran mesin Principal Component Analysis (PCA) dan algoritma K-means digunakan untuk mengurangi ukuran dimensi dataset dan menggolongkan peringkat kepercayaan dari dataset yang berisi 803 responden, termasuk 12 pertanyaan yang disajikan kepada pemakai ponsel pintar Indonesia pasca pandemi COVID-19. Algoritma klasifikasi KNN diterapkan untuk mengklasifikasikan kepercayaan pemakai ponsel pintar di Indonesia. Tes yang dilakukan termasuk akurasi, presisi, recall, dan F1-score. Hasil penelitian ini menunjukkan bahwa algoritma klasifikasi KNN mencapai tingkat akurasi 0,84, tingkat presisi 0,85, tingkat recall 0,84 dan skor F1 0,84.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
An author who publishes in the Jurnal Darma Agung agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgement of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).